返回首页 加入收藏夹 设为首页 中文English
研究前沿

Single-cell mapping of lineage and identity in direct reprogramming

发布时间:2018/12/25 浏览量:

Abstract

Direct lineage reprogramming involves the conversion of cellular identity. Single-cell technologies are useful for deconstructing the considerable heterogeneity that emerges during lineage conversion. However, lineage relationships are typically lost during cell processing, complicating trajectory reconstruction. Here we present ‘CellTagging’, a combinatorial cell-indexing methodology that enables parallel capture of clonal history and cell identity, in which sequential rounds of cell labelling enable the construction of multi-level lineage trees. CellTagging and longitudinal tracking of fibroblast to induced endoderm progenitor reprogramming reveals two distinct trajectories: one leading to successfully reprogrammed cells, and one leading to a ‘dead-end’ state, paths determined in the earliest stages of lineage conversion. We find that expression of a putative methyltransferase, Mettl7a1, is associated with the successful reprogramming trajectory; adding Mettl7a1 to the reprogramming cocktail increases the yield of induced endoderm progenitors. Together, these results demonstrate the utility of our lineage-tracing method for revealing the dynamics of direct reprogramming.

全文链接:https://www.nature.com/articles/s41586-018-0744-4

厦门大学分子影像暨转化医学研究中心   福建省分子影像诊疗工程技术研究中心   厦门市分子影像工程技术研究中心   版权所有
地址:福建省厦门市翔安区翔安南路4221-116号,邮编:361102
电话:0592-2880646,邮箱:xiamen-cmitm@xmu.edu.cn